# OCCURRENCES OF ERYTHRACARUS NASUTUS OTTO, 1999 (ANYSTOIDEA: ANYSTIDAE) IN UNDERGROUND ENVIRONMENTS IN BRAZIL

OCORRÊNCIA DE <u>ERYTHRACARUS NASUTUS</u> OTTO, 1999 (ANYSTOIDEA: ANYSTIDAE) EM AMBIENTES SUBTERRÂNEOS NO BRASIL

# Leopoldo Ferreira de Oliveira Bernardi<sup>I</sup>, Jeferson Luiz de Carvalho Mineiro<sup>II</sup>, Marconi Souza-Silva<sup>III</sup> & Rodrigo Lopes Ferreira<sup>IV</sup>

- (I) Pós-Graduação Ecologia Aplicada, bolsista CAPES, UFLA, Lavras-MG.
- (II) Centro Experimental do Instituto Biológico, Laboratório de Acarologia, Campinas-SP.
- (III) Centro Universitário de Lavras (Unilavras), Núcleo de Estudo em Saúde e Biológicas, Lavras-MG.
- (IV) Laboratório de Ecologia Subterrânea, Setor de Zoologia/Departamento de Biologia, UFLA, Lavras-MG.

Contatos: leopoldobernardi@yahoo.com.br; drops@dbi.ufla.br.

## Abstract

This work presents the first occurrences of acarids of the species Erythracarus nasutus (Trombidiforme: Anystidae) collected in different caves in Brazil. Furthermore, some morphologic aspects are presented regarding the sexual dimorphism of the species. Differently from the females, the male naso is obtuse, not presenting an enlngated projection. The male of the species presents an obtuse naso, while the females have the elongated naso. The specimens were found in 91 caves in the states of Alagoas, Bahia, Espírito Santo, Minas Gerais. Pará and Rio Grande do Norte. besides 18 artificial underground caves in the state of Minas Gerais. The specimens were collected walking freely on the soil, in organic plant remains, such as, guano, organic plant others. Brazilian matter. among The underground caves are little explored locals that serve as refuge for a large number of invertebrate species, among them the acarids. In spite of the growing knowledge of the fauna present in these Brazilian caves, manv taxonomic mainly the groups, small invertebrates, urgently need more professionals who are qualified to identify their species.

**Keywords:** Acari; Brazil; Cave; Artificial Cavities.

## Resumo

Neste trabalho são apresentadas as primeiras ocorrências de ácaros da espécie Erythracarus nasutus (Trombidiforme: Anystidae) coletados em diferentes cavidades no Brasil. Além disso, são apresentadas algumas aspectos morfológicos referentes ao dimorfismo sexual da espécie. Diferentemente das fêmeas. o naso do macho é obtuso, não aprensentando uma projeção prolongada. O macho da espécie apresenta o naso obtuso, enquanto as fêmeas tem o naso alongado. Os exemplares foram encontrados em 91 cavernas nos estados de Alagoas, Bahia, Espírito Santo, Minas Gerais, Pará e Rio Grande do Norte, além de 18 cavidades subterrâneas artificiais no estado de Minas Gerais. Os espécimes foram coletados andando livremente no solo, em restos orgânicos vegetais, tais como, guano, matéria orgânica vegetal, dentre outros. As cavidades subterrâneas brasileiras são locais pouco explorados e que servem de refúgio para um grande número de espécies de invertebrados, dentre eles estão os ácaros. Apesar de ser crescente o conhecimento da fauna presente nestas cavernas brasileiras, muitos grupos taxonômicos, principalmente os pequenos invertebrados, necessitam urgentemente que mais profissionais sejam capacitados para identificar suas espécies.

**Palavras-Chave:** Acari; Brasil; Caverna; Cavidades Artificiais.

| Eixo temático: Espeleobiologia |
|--------------------------------|
| Recebido em: 27.out.2010       |

Aprovado em: 30.mar.2011

SBE – Campinas, SP | Espeleo-Tema. v. 21, n. 2, p. 119-129. 2010.

## **1. INTRODUCTION**

Caves possess peculiar characteristics, such as absence of light, shortage of food, high humidity and a relatively constant temperature, which can restrict the colonization by many vertebrate as well as invertebrate species. Moreover, the organisms that live in the underground environment can present morphological, physiological and behavioral specializations, usually linked to the physical characteristics of this environment and also to the frequent food shortage present (CULVER, 1982).

A great part of the fauna found in the Brazilian caves is made up of small troglophylic invertebrates, such as spiders, springtails, and dipterans, among others (PINTO-DA-ROCHA, FERREIRA, 2004; SOUZA-SILVA, 1995; 2008). Among them, a group that deserves prominence for presenting a large number of species and a great diversity of habits and habitats are the organisms belonging to the Subclass (DUSBÁBEK, Acari 2001: PALÁCIOS-VARGAS et al., 2001: SCHWARZ, 2001; PINTO-DA-ROCHA, 1995; BERNARDI et al., 2009). These organisms are distributed in caves throughout the world, establishing large populations, mainly associated to organic deposits, such matter as bat guano (HERRERA, 1995; FERREIRA & MARTINS, 1999; FERREIRA et al., 2007).

Currently, among mites records in Brazilian caves, 67 families are listed distributed in 17 of the 26 states of the country. Of these, 26 families belong to the order Mesostigmata, 21 belong to Trombidiforme, 18 belong to Sarcoptiforme, two belong to Ixodida and one belongs to the order Opilioacarida (LABRUNA et al., 2008; BERNARDI et al., 2009).

Among the families registered for the Brazilian caves species of the surperfamily Anystoidea were found (BERNARDI et al., 2009). This group includes the Anystidae, Teneriffiidae and Pseudocheyletidae families. Such organisms include mites that can be found in soil of the epigean environment, on plants, rocks, amid the leaf litter and in vertebrate nests, among other places, having a preference for drier locals. Anystidae are agile, considered generalist predators and important for the control of some agricultural pests (CUTHBERTSON et al., 2003). Teneriffiidae are also predators, found in intertidal areas, soil and on plants. Pseudocheyletidae, however, are little studied, and therefore very a little is known about their habits. Some species of that family have been found in soil litter, in vertebrate nests and in moss (KRANTZ & WALTER, 2009).

Recently, the Brazilian biospeleology has going through a period where the identification of standards, related to the distribution of the fauna as well as to the characterization of the resource dynamics of these systems, has become the focus of attention in the scientific community (FERREIRA, 2004; SILVA, 2008; SOUZA-SILVA, 2008). The study of Brazilian cave acarofauna has been neglected for many years and most of the works concerning the Brazilian cave fauna presented the identification of the mites only in high taxonomic levels (as orders or families), identification at the generic or specific level (PINTO-DA-ROCHA, beina rare 1995: FERREIRA & MARTINS, 1999). Furthermore, even in the works where the specific identification of the mites was conducted, the data on ecological aspects and distribution in the cave environment is scarce (PINTO-DA-ROCHA, 1995).

The first work to present a review of the specifically regarding the Brazilian data underground acarofauna was published by Bernardi et al. (2009). From this perspective, the question arises: "why dedicate a study regarding the morphology and distribution of such a single tiny species?." To really understand how the cave communities work, how they are structured, among other themes, detailed knowledge of each species is necessary, besides their morphological aspects, which can generate data to facilitate the understanding of the community as a whole.

Given the shortage of information regarding the mites in Brazilian caves, the present study had as an objective to relate the first occurrences of the genus *Erythracarus* Berlese 1903 (Anystoidea: Anystidae) besides demonstrating their distribution in other hypogean environments, as well as to present some aspects of the *Erythracarus nasutus* ecology and morphology.

## 2. MATERIALS AND METHODS

The specimen examined in this work came from collections conducted during the last 12 years by the team of the Underground Ecology Laboratory of the Federal University of Lavras (Biology Department/Zoology Sector), in addition, some specimens collected by other groups were included. All of the specimens are deposited in the Zoology Collection. (Underground Invertebrates) of Lavras, (ISLA) located in the Zoology Sector/Biology Department of the Federal University of Lavras.

A total of 760 caves were inventoried in the states of Alagoas, Bahia, Ceará, Espírito Santo, Goiás, Mato Grosso, Minas Gerais, Pará, Paraná, Pernambuco, Rio Grande do Norte, Rio Grande do Sul, Rio de Janeiro, Santa Catarina, São Paulo, Sergipe and Tocantins, besides 110 artificial cavities (underground mines) in the state of Minas Gerais.

Seeking to obtain data about the ecology of these mites, the position of each specimen, when collected, was noted on a schematic outline of each cave. In this way, the number of individuals and the substrata to the which it was associated and the distribution of each population in each cave was obtained.

All of the specimens were collected with the aid of a brush, after an extensive search of the whole cave, and stored in 70% alcohol. Later, the mites of the family Anystidae were separated. Mites were cleared in Nesbitt's solution, when necessary, and mounted on slides for microscopy using Hoyer's medium (KRANTZ & WALTER, 2009). The whole procedure for the specimens identification was done using a Leica MDLS phase contrast microscope, with the aid of the identification and the morphological descriptions kevs present in Otto (1999a) and Krantz & Walter (2009). The setal nomenclature of Otto (1999a) is followed.

#### **3. RESULT AND DISCUSSION**

#### 3.1. Taxonomic accounts

According to Otto (1999a) the species belonging to Erythracarus Berlese, 1903, have as diagnostic characteristics: i) the presence of the seta ve inserted in the lateral extremity of the proximal shield on opposite side of the seta sce; ii) the presence of a prolonged and guite evident projection on the tibia of the palpus; iii) the presence of setae on the ventral part of the hypostome and iv) the tritonymphs and the adults always present more than 5 setae on the palpus of the tibia. Erythracarus nasutus has the presence of 5 setae on the telofemur I in the adult as a taxonomic trait for species diagnosis, besides a tipically characteristic naso present in the females. Such a structure, located on the dorsal portion close to the gnatosome, has a wide, rounded base, with a long extremity (OTTO, 1999a) (Figure 1b).

The males of *E. nasutus* has not been described yet. Differently from the females, the male's naso is obtuse, not presenting a prolonged projection, the base being wider and more spaced between the pairs of setae (Figure 1a). In the caves and artificial cavities surveyed the males were found sharing the same living space with females and juveniles.

the Besides above-mentioned characteristics, some morphological traits can be observed that are not used for species diagnosis, their being common to other species the gender Erythracarus, but little of represented in the description made by Otto (1999a). Among these stand out the sickleshaped chelicerae, the barbed genital setae, the barbed setae in the distal part of chelicerae, four pars of setae in hypostome, and the radula with small teeths are noteworthy (Figures 2 and 3).

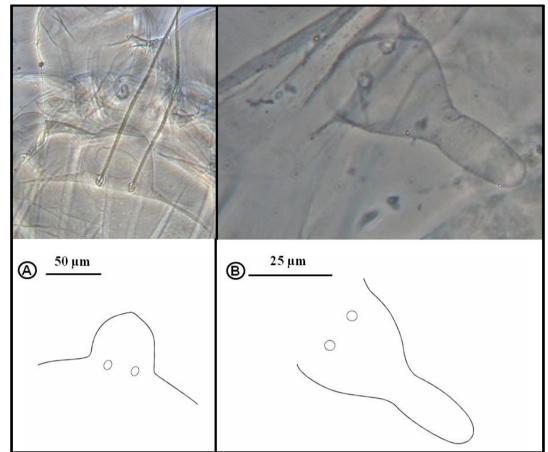



Figure 1: *Erythracarus nasutus*: A) typical naso present in the males; B) typical naso present in the females.

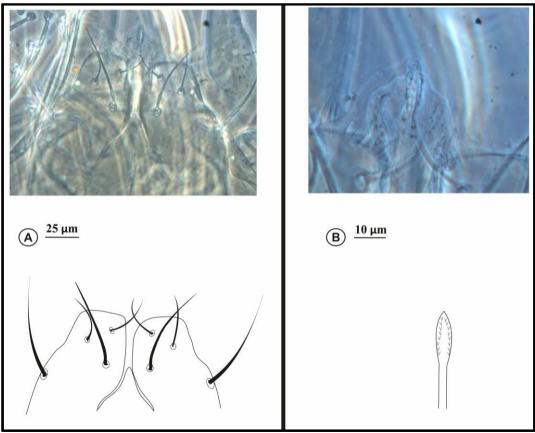



Figure 2: *Erythracarus nasutus*: A) Details of the hypostome; B) Details of the radula.

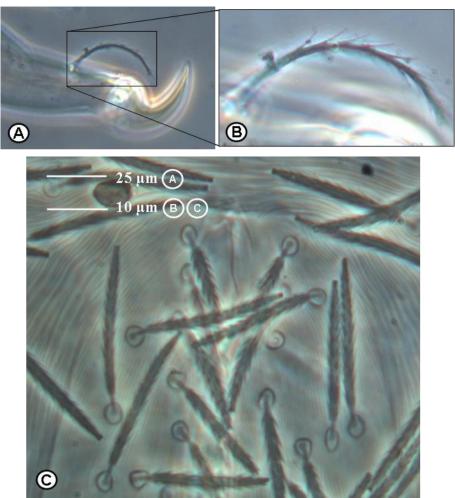



Figure 3: *Erythracarus nasutus*: A) sickle-shaped chelicerae; B) detail of the seta located near the chelicerae and C) detail of the setae in the anterior region of the genitalia.

#### 3.2. Geographic distribution

All of the Anystidae specimens are found in 91 caves in the states of Alagoas, Bahia, Espírito Santo, Minas Gerais, Pará, Rio Grande do Norte and São Paulo, besides 18 artificial cavities in the state of Minas Gerais, belong to the subfamily Erythracarinae and the species Erythracarus nasutus Otto, 1999 (Attachment 1 and 2, Figures 5 and 6).

The occurrences of this species are concentrated mainly in the southeast region. However, such a fact is certainly due to the higher amount of caves inventoried in this area in relation to other areas of the country. The low number of records from other places, such as the North of Brazil, certainly reflects the reduced number of inventories conducted in the caves of that area.

The wide distribution of this species can be linked to the habit of the mites of the genus *Erythracarus* in the epigean environment. This group is widely found in litter (OTTO, 1999a), having a preference for shaded places, such as those found in caves. Furthermore, when the organic matter is transported by wind or water to the interior of the caves, it can also carry organisms present in the organic matter itself. The specimens conducted to the interior of the hypogean environment can colonize and establish populations in these systems.

#### 3.3. Ecological aspects

Otto (1999a) used mainly specimens from collections in the epigean environment collected in litter. Among these samples, only collections conducted in caves were mentioned. However, in these, the specimens were always in litter close to the entrances. The present work, however, demonstrates clearly that E. nasutus is a gender observed with Brazilian considerable frequency in the hypogean environment, even in areas far from the entrance.

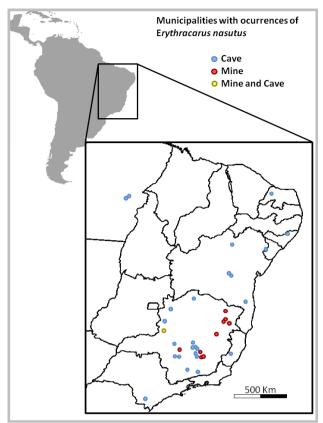



Figure 4: Indication of the municipalities and the occurrence of *Erythracarus nasutus* in underground cavities in Brazil

The specimens of *E. nasutus* were observed in different substrata present in the

underground environment. Among these, were guano, litter, the interior and the surface of deteriorated wood fragments, spaces under rocks, rocky substrata, on bare soil, or on speleothems, when they were not soaked. As mentioned above, these organisms were observed near the entrance, as well as within the cave, in permanently aphotic places. As an example of the diversity of habitats occupied by E. nasutus, the Lapa Nova grotto can be mentioned. located in Vazante, in the northwest of the state of Minas Gerais. In this cave two collections were conducted in the period of one year, the first being on April, 07, 2009 (time of little rain), and the second on September, 17, 2009 (time of little rain). In the first collection 18 individuals were found, of which four were in an area with light incidence (close to the entrance), three freely transited on a rocky, dry substrate with little litter, very close to individuals of the family Teneriffiidae. Another individual was found between the rifts and fissures on a very dry earth floor. The remaining specimens were observed inside the cave, in aphotic areas, walking on the floor and among humid organic plant matter. On the second visit to Lapa Nova specimens were observed at the same places, two being individuals in photic areas close to the entrance and nine in more interior areas, which were completely aphotic.

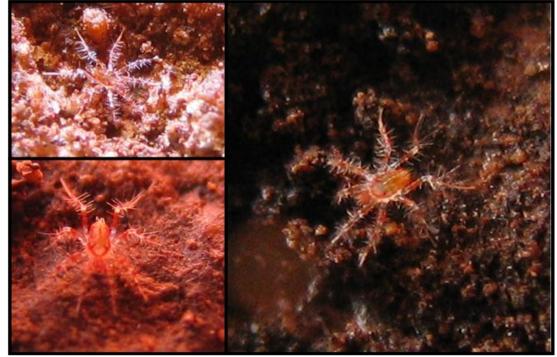



Figure 5: General aspects of *Erythracarus nasutus* in the soil of "Lapa Nova" cave, Vazante, Minas Gerais State.

In the "Furna do Fim do Morro do Parafuso" cave (Paripiranga, Bahia), individuals of *E. nasutus* were found associated to the guano of hematophagous bats, among the fissures present in a very dry portion of that substrate. Similar behavior was found at the "Gruta Morena" cave (Cordisburgo, Minas Gerais State). In this local, eight individuals were observed, among nymphs and adults, circulating on the surface portion and among fissures of a soil covered by hematophagous bat guano. In the same place a large number Collembola were also observed, that are probably potential prey of these mites.

The *E. nasutus* specimens, found inside artificial underground systems, were also observed walking on the floor and among organic plant matter, having been observed in areas close to the entrance, as well as in aphotic areas.

The Anystidae are agile predators, and some species, such as Anystis baccarum Lineaus, 1758, are important organisms in the control of pests in agrosvstems (CUTHBERTSON et al., 2003). Based on the morphology and given the predatory nature of the species of the family, the role of *E. nasutus* in the cave communities should be studied. But unfortunately, the importance of the acarids in cave communities has been largely ignored. This occurs even with the knowledge that many species of this group, including Anystidae, are important predators of various invertebrates, and can be responsible for the structuring of communities, causing the decline of prey populations (WALTER & OLIVER, 1989; CUTHBERTSON et al., 2003; KRANTZ & WALTER, 2009).

All of the collected individuals present quite typical behavior. They are very agile and, when routed, with a touch or a light blow, they present an escape behavior with very fast movements, traveling the substrate in a random continually changing direction way, and stopping abruptly. They were immobile until the moment at which they were newly stimulated. behavior, called protean behavior, Such seemingly hinders their capture by eventual predators. The high speed with which the specimens moved hindered the collection. The specimens of the subfamily Erythracarinae are extremely fast, usually presenting all tarsi as very prolonged and flexible, besides being

subdivided in false segments, which contributes to their high mobility (OTTO, 1999b) (Figure 6).



Figure 6: The arrow points to one of the pseudosegmentation present in the tarsus IV of *Erythracarus nasutus.* 

# 4. FINAL REMARKS

The occurrence of Anystidae in Brazilian caves, until now, has been unknown. However, the diversity of substrates possibly colonizable by *E. nasutus*, besides its geographical distribution, as well as the number of species present in caves and artificial galleries should be higher than related in our work. Such situation certainly is a reflection of the low number of caves and artificial cavities studied in Brazil.

The expansion of knowledge on the groups present in underground ecosystems is decisive for the advancement of knowledge on the operation of those systems. The lack of taxonomists and inefficient collection are already being pointed to as one of the main problems for Brazilian biospeleology SOUZA-SILVA, (FERREIRA, 2005; 2008: BERNARDI et al., 2009; FERREIRA et al., 2009). Investments by government agencies in the training of professionals, can be one of the solutions for the problems generated by the lack of such professionals, but the adequate training is the responsibility of the research centers already established in the country.

# Acknowledegments

This work counted on financial aid from the Critical Ecosystem Partnership Fund, Conservação Internacional do Brasil, CNPq, (Proc. nº: 477712/2006-1) and FAPEMIG

(Processes N°: APQ 4189-5.03-07, APQ 01826-08, APQ 01854-09, APQ 03526-09). To researchers Maurício Sérgio Zacarias, and to Paulo Rebelles Reis for the incentive and for allowing the use of the equipment present in EPAMIG/CTSM-EcoCentro Lavras. The authors of this work thank , Regina Bessi, Renata Andrade, Maysa Fernanda de Souza, Thaís Giovannini Pellegrini, Xavier Prous, Robson Zampaulo e Diego M. Bento for conducting the collection of part of the material. Thanks to ICMBIO/CECAV, and we thank Dr. Abel Perez (UFRJ) for his constructive comments on the manuscript.

# 5. REFERENCES

- BERNARDI, L.F.O.; ZACARIAS, M.S.; SOUZA-SILVA, M.; FERREIRA, R.L. Ácaros cavernícolas do Brasil: uma observação preliminar sobre a ocorrência e distribuição das famílias. Mundos Subterráneos, n.20, p.5-13, 2009
- CUTHBERTSON, A.G.S.; BELLA, A.C.; MURCHIE A.K. Impact of the predatory mite *Anystis baccarum* (Prostigmata: Anystidae) on apple rust mite *Aculus schlechtendali* (Prostigmata: Eriophyidae) populations in Northern Ireland Bramley orchards. **Annals of Applied Biology**, n.142, p.107-11, 2003.
- DUSBÁBEK, F. Acari Parasiti. In: JUBERTHIE, C.; DECU, V. (Eds). *Encyclopaedia Bioespeleológica, Tome II*. Fabbro Saint-Louis, Moulis-Bucarest. 2001. 835-1373 pp.
- FERREIRA, R.L. 2004. A medida da complexidade ecológica: E suas aplicações na conservação e manejo de ecossistemas subterrâneos. 2004.
  161p. Tese (Doutorado em ecologia). Instituto de Biologia, Universidade Federal de Minas Gerais. Belo Horizonte.
- FERREIRA, R.L. A vida subterrânea nos campos ferruginosos. **O Carste.** n.7, p.106-115. 2005.
- FERREIRA, R.L.; MARTINS R.P. Trophic structure and natural history of bat guano invertebrate communities, with special reference to Brazilian caves. **Tropical Zoology**, n.12, p.231-252. 1999.

- FERREIRA, R.L.; PROUS, X.; MARTINS, R. P. Structure of bat guano communities in a Brazilian dry cave. **Tropical Zoology**, n. 20, p.55-74, 2007.
- FERREIRA. R.L.; SOUZA-SILVA. M.: BERNARDI. L.F.O. Contexto Bioespeleológico. In: DRUMMOND, G. M.; MARTINS, C.S.; VIEIRA F. (Eds.). Biota Minas, Diagnóstico do conhecimento sobre a biodiversidade no estado de Minas Gerais Subsidios ao programa BIOTA MINAS. 2009. 160-175 pp.
- HERRERA, F.F. Las comunidades de artropodos del guano del guácharos en la cueva del guácharo, Venezuela. Boletim da Sociedad Venezoelana de Espeleologia, n. 29, p.39-46, 1995.
- KRANTZ, G.W.; WALTER, D.E. **A Manual of Acarology.** 3nd Edn. Texas Tech University Press. Lubbock, Texas. 2009. 807 pp.
- LABRUNA, M.B.; TERASSINI, F.A.; CAMARGO, L.M.; BRANDÃO, P.E.; RIBEIRO, A.F.; ESTRADA-PEÑA A. New reports of *Antricola guglielmonei* and *Antricola delacruzi* in Brazil, and a description of a new argasid species (Acari). **Journal of Parasitology**, n. 94, p. 788-792, 2008.
- OTTO, J.C. Revision of the genus *Erythracarus* Berlese (Acarina: Anystidae: Erythracarinae). **Journal of Natural History,** n. 33, p.825-909. 1999a.
- OTTO, J.C. The taxonomy of *Tarsotomus* Berlese and *Paratarsotomus* Kuznetsov (Acarina: Anystidae: Erythracarinae) with observations on the natural history of Tarsotomus. **Invertebrate Taxonomy**, n. 13, p.749-803. 1999b.
- PALÁCIOS-VARGAS, J.; DECU, V.; IAVORSKI
  V.; HUTZU, M.; JUBERTHIE C. Acari Terrestria. In: JUBERTHIE, C.; DECU, V. (Eds). Encyclopaedia Bioespeleológica, Tome II. Fabbro Saint-Louis, Moulis-Bucarest. 2001. 835-1373 pp.
- PINTO-DA-ROCHA, R. Sinopse da fauna cavernícola do Brasil (1907-1994). **Papéis Avulsos Zoologia**, n. 39, p.61-173,1995.

- SCHWARZ, A.; SCHWOERBEL, J.; GRUIA, M. Hydracarina. In: JUBERTHIE, C.; Decu, V. (eds). Encyclopaedia Bioespeleológica, Tome II. Fabbro Saint-Louis, Moulis-Bucarest. 2001. 835-1373 pp.
- SILVA, A.P.B. Enriquecimento trófico em ambientes subterrâneos e suas aplicações para a conservação da biodiversidade de invertebrados aquáticos. 2008. 153pp. Dissertação (Mestrado em Ecologia). Instituto de Biologia, Setor de Zoologia, Universidade Federal de Lavras. Lavras.
- SOUZA-SILVA, Μ. Estrutura de comunidades de invertebrados em cavernas da Atlantic Forest. 2008. 217 p., UFMG. Tese (Doutorado em ecologia). Instituto de Biologia, Universidade Federal de Minas Gerais. Belo Horizonte.
- WALTER, D.E.; OLIVER, J.H. Geolaelaps oreithyiae n. Sp. (Acari: Laelapidae), a thelytokous predator of arthropods and nematodes, and a discussion of clonal reproduction in the mesostigmata. Acarologia, n. 30, v. 4, p. 293-303, 1989.

**Attachment 1:** Occurrence of the species *Erythracarus nasutus* Otto, 1999 (Anystoidea: Anystidae) in Brazilian caves (AL – Alagoas, BA – Bahia, ES – Espírito Santo, MG - Minas Gerais PA – Pará, RN – Rio Grande do Norte e SP – São Paulo). At: Atlântic Forest: Am: Amazon Forest: Ca: Caatinga: Ce: Cerrado.

| Grande |                | São Paulo). At: Atlântic Forest | ; Am: Ama | azon Foresi | i; Ca: C |           | Cerrado. |
|--------|----------------|---------------------------------|-----------|-------------|----------|-----------|----------|
| State  | Localidade     | Cave                            | Easting   | Northing    | Zona     | Lithology | Bioma    |
| PA     | Parauapebas    | Gruta N4E-34                    | 595999    | 9325006     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta N4E-63                    | 593586    | 9333102     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta N4E-72                    | 593664    | 9333140     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta N4E-73                    | 593639    | 9333142     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta N4E-75                    | 593977    | 9333300     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta N4E-78                    | 593936    | 9333102     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta N4E-77                    | 593981    | 9333120     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta N4E-95                    | 593084    | 933231      | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta N4E-85                    | 593281    | 9332956     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta 22-S11                    | 573571    | 9291252     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta 01-S11                    | 573571    | 9291252     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta 05-S11                    | 571889    | 9292438     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta 22-S11                    | 573571    | 9291252     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta 31-S11                    | 570610    | 9291455     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta 94-S11                    | 575044    | 9293118     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta 38-S11                    | 569601    | 9291110     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta 22-S11                    | 569745    | 9291837     | 22M      | Iron Ore  | Am       |
| PA     | Parauapebas    | Gruta 46-S11D                   | 575605    | 9290890     | 22M      | Iron Ore  | Am       |
| PA     | Carajás        | Gruta N4E-81                    | 593452    | 9333075     | 22M      | Iron Ore  | Am       |
| PA     | Carajás        | Gruta N4E-93                    | 593117    | 9332356     | 22M      | Iron Ore  | Am       |
| PA     | Carajás        | Gruta N5S-41                    | 596149    | 9324982     | 22M      | Iron Ore  | Am       |
| PA     | Carajás        | Gruta N5S-41                    | 595855    | 9325082     | 22M      | Iron Ore  | Am       |
| PA     | Carajás        | Gruta N5S-48                    | 595901    | 9324912     | 22M      | Iron Ore  | Am       |
| PA     | Carajás        | Gruta N5S-57                    | 595986    | 9324725     | 22M      | Iron Ore  | Am       |
| PA     | Carajás        | Gruta N5S-59                    |           |             |          | Iron Ore  | Am       |
| PA     | Carajás        | Gruta N5S-36                    | 596149    | 9324982     | 22M      | Iron Ore  | Am       |
| PA     | Carajás        | Gruta N5S-71                    | 593683    | 9333148     | 22M      | Iron Ore  | Am       |
| AL     | Murici         | Toca da Raposa I                | 179908    | 8978784     | 25L      | Granite   | At       |
| BA     | Campo Formoso  | Toca do Morrinho                | 289887    | 8870864     | 24L      | Dolomite  | Ca       |
| BA     | ltaetê         | Lapa do Bode                    | 275894    | 8569218     | 24L      | Limestone | Ca       |
| BA     | Nova Redenção  | Poço Azul do Milú               | 266719    | 8586036     | 24L      | Limestone | Ca       |
| BA     | Paripiranga    | Furna do Morro do Parafuso      | 623890    | 8823540     | 24L      | Limestone | Ca       |
| BA     | Pau Brasil     | Gruta Milagrosa                 | 420012    | 8296903     | 24L      | Limestone | At       |
| BA     | Pau Brasil     | Toca dos Morcegos               | 420638    | 8295919     | 24L      | Limestone | At       |
| BA     | Santa Luzia    | Lapa da Pedra do Sino           | 466472    | 8293253     | 24L      | Limestone | At       |
| ES     | Afonso Cláudio | Gruta do Didi Vieira            | 284301    | 7780270     | 24K      | Granite   | At       |

SBE – Campinas, SP | Espeleo-Tema. v. 21, n. 2, p. 119-129. 2010.

| MG | Arcos               | Gruta Ponto 42                    | 434335 | 7757367 | 23K        | Limestone              | Ce       |
|----|---------------------|-----------------------------------|--------|---------|------------|------------------------|----------|
| MG | Arcos               | Gruta da Bocaininha IV            | 436456 | 7755256 | 23K        | Limestone              | Ce       |
| MG | Arcos               | Gruta da Bocaininha VI            | 436426 | 7755318 | 23K        | Limestone              | Ce       |
| MG | Arcos               | Gruta Cazanga                     | 437695 | 7756891 | 23K        | Limestone              | Ce       |
| MG | Arcos               | Gruta do Índio                    |        |         |            | Limestone              | Ce       |
| MG | Arcos               | Gruta do Zé Colméia               | 437762 | 7757246 | 23K        | Limestone              | Ce       |
| MG | Arinos              | Lapa da Suindara                  | 354162 | 8240098 | 23L        | Limestone              | Ce       |
| MG | Coromandel          | Caverna do João do Pó             |        |         |            | Limestone              | Ce       |
| MG | Cordisburgo         | Gruta da Morena                   | 569484 | 7880316 | 23K        | Limestone              | Ce       |
| MG | Curvelo             | Lapa do Mosquito                  | 561971 | 7940440 | 23K        | Limestone              | Ce       |
| MG | Doresópolis         | Gruta P11                         | 414518 | 7754252 | 23K        | Limestone              | Ce       |
| MG | Doresópolis         | Gruta P42                         | 410692 | 7756166 | 23K        | Limestone              | Ce       |
| MG | Itabirito           | Gruta da Mina do Pico XII         | 616173 | 7758696 | 23K        | Iron Ore               | Ce/At    |
| MG | Itacarambi/Januária | Gruta do Janelão                  | 581540 | 8329060 | 23         | Limestone              | Ce/At    |
| MG | Itacarambi/Januária | Gruta do Brejal                   | 581540 | 8329060 | 23         | Limestone              | Ce/At    |
| MG | Lima Duarte         | Gruta das Casas                   | 614323 | 7598762 | 23K        | Quartzite              | At       |
| MG | Luminárias          | Gruta do Lobo                     | 519845 | 7617685 | 23K        | Quartzite              | At       |
| MG | Matozinhos          | Gruta das Maritacas               |        |         |            | Limestone              | Ce       |
| MG | Matutina            | Lapa do Campo de Futebol          | 398585 | 7874853 | 23K        | Sandstone              | Ce       |
| MG | Nova Lima           | Capão Xavier I                    | 606715 | 7782652 | 23K        | Iron Ore               | Ce/At    |
| MG | Nova Lima           | Gruta do Rola Moça III            | 603930 | 7783362 | 23K        | Iron Ore               | Ce/At    |
| MG | Pains               | Gruta da Divisa                   | 430684 | 7745028 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta do Capão                    | 442094 | 7746071 | 23K        | Limestone              | Ce       |
| MG | Pains               | Loca D'água (Sumidouro)           | 427723 | 7741487 | 23K        | Limestone              | Ce       |
| MG | Pains               | Loca D'água (Ressurgencia)        | 427810 | 7741447 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta Olhos D'água                | 428478 | 7753842 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta do Zé Serafim               | 431977 | 7742570 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta Paca                        | 431269 | 7735945 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta dos Negros (seca)           | 431209 | 7740191 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta Ninfetas de Baixo           | 435779 | 7750970 | 23K<br>23K | Limestone              | Ce<br>Ce |
| MG | Pains               | Gruta Massambará                  | 415287 | 7751358 | 23K<br>23K |                        | Ce<br>Ce |
| MG | Pains               | Gruta Massambara<br>Gruta Paranoá |        | 7747934 | 23K<br>23K | Limestone<br>Limestone | Ce<br>Ce |
|    |                     | Gruta do Éden                     | 430136 |         |            |                        |          |
| MG | Pains               |                                   | 430435 | 7745181 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta da Divisa                   | 430684 | 7745028 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta do Cavalinho                | 416815 | 7754877 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta do Dimas                    | 430963 | 7736724 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta da Água Limpa               |        |         |            | Limestone              | Ce       |
| MG | Pains               | Gruta do Coqueiro I               | 430687 | 7744921 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta Ninfeta de Cima             | 435796 | 7750980 | 23K        | Limestone              | Ce       |
| MG | Pains               | Buraco do Nando                   | 437559 | 7746446 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta do Trenzinho                | 437100 | 7740000 | 23K        | Limestone              | Ce       |
| MG | Pains               | Buraco do Nando                   | 437559 | 7746446 | 23K        | Limestone              | Ce       |
| MG | Pains               | Gruta do Trenzinho                | 437100 | 7740000 | 23K        | Limestone              | Ce       |
| MG | Paracatu            | Lapinha de Santo Antônio          | 306536 | 8105656 | 23K        | Limestone              | Ce       |
| MG | Paracatu            | Lapinha Cava                      | 297248 | 8132338 | 23K        | Limestone              | Ce       |
| MG | Prudente de Morais  | Gruta 4                           |        |         |            | Limestone              | Ce       |
| MG | Sete Lagoas         | Gruta da Taboa                    | 569922 | 7846264 | 23K        | Limestone              | Ce       |
| MG | Sete Lagoas         | Gruta do Morrote I                |        |         |            | Limestone              | Ce       |
| MG | Unaí                | Lapa do Sapezal                   | 297937 | 8141547 | 23K        | Limestone              | Ce       |
| MG | Vazante             | Urtiga                            | 307291 | 8016087 | 23K        | Dolomite               | Ce       |
| MG | Vazante             | Lapa Nova                         | 299855 | 8008865 | 23K        | Dolomite               | Ce       |
| MG | Vazante             | Lapa do Guardião Severino         | 300039 | 8010088 | 23K        | Dolomite               | Ce       |
| RN | Felipe Guerra       | Gruta da Carrapateira             | 648022 | 9385241 | 24L        | Limestone              | Ca       |
| SP | Iporanga            | Gruta Minotauro                   | 758243 | 7312845 | 22J        | Limestone              | At       |
| SP | Iporanga            | Gruta Morro Preto                 | 733192 | 7286040 | 22J        | Limestone              | At       |
|    |                     |                                   |        |         |            |                        |          |

| State | Localidade         | Artificial Cavities | Easting | Northing | Zona | Bioma |
|-------|--------------------|---------------------|---------|----------|------|-------|
| MG    | Ataléia            | Poldo Boq.          | 265312  | 8084015  | 24K  | At    |
| MG    | Caraí              | Valdivino           | 234098  | 8105187  | 24K  | At    |
| MG    | Caraí              | Dona Ana II         | 234299  | 8105562  | 24K  | At    |
| MG    | Caeté              | Morro Vermelho II   | 634734  | 7791892  | 23K  | At    |
| MG    | Caeté              | Morro Vermelho III  | 634637  | 7791898  | 23K  | At    |
| MG    | Caeté              | Matarelli           | 637369  | 7791856  | 23K  | At    |
| MG    | Mariana            | Casa                | 662883  | 7748789  | 23K  | At    |
| MG    | Mariana            | Cavalo (Canela II)  | 662516  | 7748549  | 23K  | At    |
| MG    | Mateus Leme        | Beija Flor          | 448037  | 7812775  | 23K  | At    |
| MG    | Medina             | Serra Azul I        | 234974  | 8206406  | 24K  | At    |
| MG    | Ouro Preto         | Volta do Povo Porco | 655472  | 7745893  | 23K  | At    |
| MG    | Padre Paraíso      | Wanderley I         | 241368  | 8113845  | 24K  | At    |
| MG    | Padre Paraíso      | Wanderley II        | 241344  | 8113882  | 24K  | At    |
| MG    | Padre Paraíso      | Domingos Pastel I   | 239799  | 8114356  | 24K  | At    |
| MG    | Padre Paraíso      | Domingos Pastel VII | 239796  | 8114494  | 24K  | At    |
| MG    | São José da Safira | Chiá (Donizete) I   | 797343  | 7974979  | 23K  | At    |
| MG    | São José da Safira | Chiá (Donizete) II  | 797374  | 7975411  | 23K  | At    |
| MG    | Vazante            | VMetais             | 305823  | 8016109  | 23K  | Ce    |

| Attachment 2: Occurrence of the species Erythracarus nasutus Otto, 1999 (Anystoidea: Anystidae) in |
|----------------------------------------------------------------------------------------------------|
| Brazilian artificial cavities (MG - Minas Gerais). At: Atlântic Forest; Ce: Cerrado.               |



A revista *Espeleo-Tema* é uma publicação da Sociedade Brasileira de Espeleologia (SBE). Para submissão de artigos ou consulta aos já publicados visite:

www.cavernas.org.br/espeleo-tema.asp